Tiny Crystals-Global Impact

 Why Snow Matters to You!Dr. Matthew Sturm
OMSI Science Pub-February 1, 2022

Diamond Dust

January

Max. 48 million square kilometers= 12 billion acres

First, a recent personal connection to Oregon and snow.

Tracking the Missoula Floods

Fig. 3. Percentage of annual water-equivalent precipitation that falls as snow. Antarctica is mostly Ice and therefore not shown. These data were generated by creating annual averages of 39 years of monthly ERA5-Land water-equivalent snowfall and total precipitation data (see section 2 b), calculating the ratio of the two variables, and multiplying by 100 .

How much runoff originates as snow in the western United States, and how will that change in the future?

Dongyue Li ${ }^{1,2}$ (D), Melissa L. Wrzesien ${ }^{1}$ (D) Michael Durand ${ }^{1}{ }^{(\mathbb{D}}$, Jennifer Adam ${ }^{3}$ (D), and Dennis P. Lettenmaier ${ }^{2}$ (D)
${ }^{1}$ School of Earth Sciences and Byrd Polar and Climate Research Center, Ohio State University, Columbus, Ohio, USA, ${ }^{2}$ Department of Geography, University of California, Los Angeles, California, USA, ${ }^{3}$ Department of Civil and Environmental Engineering, Washington State University, Pullman, Washington, USA

Abstract In the western United States, the seasonal phase of snow storage bridges between winter-dominant precipitation and summer-dominant water demand. The critical role of snow in water supply has been frequently quantified using the ratio of snowmelt-derived runoff to total runoff. However, current estimates of the fraction of annual runoff generated by snowmelt are not based on systematic analyses. Here based on hydrological model simulations and a new snowmelt tracking algorithm, we show thet 53% of the total runoff in the western United States originates as snowmelt, despite only 37% or the precipitation falling as snow. In mountainous areas, snowmelt is responsible for 70% of the total runoff. By 2100, the contribution of snowmelt to runoff will decrease by one third for the western U.S. in the Intergovernmental Panel on Climate Change Representative Concentration Pathway 8.5 scenario. Snowmelt-derived runoff currently makes up two thirds of the inflow to the region's major reservoirs. We argue that substantial impacts on water supply are likely in a warmer climate.

Fraction of precipitation that falls as snow

RCP4.5

0
-0.05
-0.1
-0.15
-0.3
-0.35
-0.4

RCP8．5

0
 $$
-0.05
$$
 $$
-0.1
$$
 $$
-0.15
$$
 $$
f_{0, \text { snow }}
$$
 $$
-0.3
$$
 $$
-0.35
$$
 $$
-0.4
$$

Upper Columbia

ANNUAL BASIN STATISTICS:

VOLUME OF RUNOFF FROM SNOW AND RAIN:
18.37M acre-feet PERCENT OF RUNOFF FROM sNow:
72.4\%

VOLUME OF RUNOFF FROM SNøW: 13.29M acre-feet VOLUME OF RUNOFF FROM RAIN: 5.08M acrefeet

Annual Percentage of Runoff From Snow

https://porkloin.github.io/basinSnow/

The Value of Natural Capital in the Columbia River Basins A Comprehensive Analysis

SHOW ME THE MONEY. . . .

\$3,066,514,176
\$3,388,935,087
\$3,664,655,116
\$3,373,356,570

COLUMBIA RIVER BASIN

Recreational Days	$80,598,106$
Economic Value	$\$ 4,683,458,594$

CROPLAND ACRES						USDA CROPLAND VALUE PER ACRE	
STATE	Irrigated	Non-Irrigated	Irrigated	Non-Irrigated	Difference	Economic Value of Water Supply	
Oregon	689,823	$2,051,594$	$\$ 4,650$	$\$ 2,020$	$\$ 2,630$	$\$ 1,814,234,490$	
Utah	1,390	3,678	$\$ 5,350$	$\$ 1,170$	$\$ 4,180$	$\$ 5,810,200$	
Washington	$1,334,598$	$4,708,974$	$\$ 8,250$	$\$ 1,330$	$\$ 6,920$	$\$ 9,235,418,160$	
COLUMBIA RIVER BASIN	$\mathbf{4 , 9 1 3 , 9 6 4}$	$\mathbf{9 , 2 3 9 , 7 1 0}$				$\$ \mathbf{2 1 , 1 7 9 , 1 7 3 , 3 7 0}$	

Cooling services: \$475 billion (Euskirchen et al., 2013)

Outdoor Recreation:

In 2013 there were 144,601 snowmobiles sold worldwide; 48,536 were sold in the U.S. and 44,022 were sold in Canada. At $\$ 6000 /$ machine that would be about $\$ 0.9$ billion in U.S. and \$291 million in Canada

The Economic Impact of Snowmobiling
United States- $\$ 26$ billion annually
Canada- \$ 8 billion annually
Europe \& Russia-\$ 5 billion annually
http://www.snowmobile.org/pr_snowfacts.asp

The global ski industry (ski lifts, restaurants and accommodations, ski schools, retail operations, equipment manufacturers) is est. to be worth:

USA: $\quad \$ 9$ billion annually (2003)
Canada: \$680 million
Western Europe: $\$ 3$ billion
Japan
Australia
TOTAL:
$\$ 1.4$ billion
$\$ 94$ million
more than $\$ 14$ billion

330 million skier visits worldwide

National Ski Areas Association (NSAA) (2004) http://www.nsaa.org. Accessed 1 September 2004 Lazard A (2002) Ski winter: world flat. Ski Area Manage September: 24-27
KPMG Consulting (2000) Victoria alpine resorts - economic significance study 2000. State of Victoria,
Australia. http://www.arcc.vic.gov.au/documents/Alpine\ Economic\ 2000\ Full
\%20report\%20(1356b).pdf. Accessed 26 January 2006

So why care about snow?

And on up the river is Grand Coulee Dam
The mightiest thing ever built by a man
To run the great factories and water the land
So roll on, Columbia, roll on.

Woody Guthrie, 1941

But why is there snow? Cosmic serendipity.

Not too hot.......not too cold.

On Earth, the three phases of water exist and often co-exist.

Material

Latent Heat of Melting

(kJ/kg)

Gold
Iron, gray cast
Lead
Silver
Water, Ice
Zinc

67
96
22
88
334
118

Material

Gold
Iron, gray cast Lead
Silver
Water, Ice
Zinc

Specific Heat

(kJ/kg K)
0.13
0.45
0.13
0.23
2.0
0.39

Material

Insulation Value

Concrete
Pine
Fiberglass batts
Foam board

Snow (depth hoar)
Snow (wind slab)
(W/m K)
0.40
0.12
0.04
0.03
0.04
0.40

Material

Albedo

\% sunlight reflected

Asphalt
Sand Soil Grass

Snow (new)
Ocean

4
40
17 25

90
6

A few other important snow and ice properties

- Super-cools to $-40^{\circ} \mathrm{C}$
- Practically a universal solvent
- Miscible with salts
- Always has a QLL (quasi-liquidilke layer)

Getting it to snow: harder than you think.

Freezing water requires nucleation

Homogeneous nucleation: only in the coldest of clouds $\left(-40^{\circ} \mathrm{F}\right)$

Heterogeneous nucleation: the major mechanism for the formation of cloud droplets and possibly ice particles.

CCN: Cloud Condensation Nuclei droplets IN: Ice Nuclei ice particles

CCN Nuclei

- Illite
- Kaolinite
- vermiculite

- Biogenic IN
- Anthropogenic IN
- Decomposing organics
- Bacteria (Pseudomonas syringae)
- Viruses

Ideal Properties

- Insoluable
- Larger
- Similar structure to ice

- Strong hydrogen bonds

Source of solute in droplets?
Real atmosphere is not clean - aerosols act as Cloud Condensation Nuclei

But how do these get up in the sky?

Dust storms - clay particles
Biomass burning - carbon, dust, ash
Volcanic activity $-\mathrm{SO}_{2}$, tephra Ocean bubble burst - salts ($\mathrm{NaCl}, \mathrm{K}^{+}, \mathrm{Mg}^{+2}, \mathrm{CO}_{3}{ }^{2}$-) Pollen, fungi spores, bacteria, virus

Heterogeneous Nucleation

August 28, 2021-Healy, Alaska

Dry Adiabatic Lapse Rate (Γ_{d}):

$$
\Gamma_{d}=\frac{\mathrm{dT}}{\mathrm{dz}}=-\frac{\mathrm{g}}{\mathrm{c}_{\mathrm{p}}}=-9.8^{\circ} \mathrm{C} / \mathrm{km}
$$

Stoke's settling velocity \& Air resistance

Gravity \square

Ríming

Aggregation

From the crystal fottory . . .

Why such "fearful symmetry"?

Ukichiro Nakaya (1900-1962)

The Christmas Storm of 2021 - Fairbanks, Alaska

Many Alaskans will remember Christmas, 2021 as a holiday of big snow, freezing rain, power outages, and roof collapses.

But the storm was also a wonderful example of a snowstorm evolving over time, with the snow crystals telling us what was happening in the clouds.

A journey through the Nakaya Snow Crystal Morphology Diagram

Above-freezing temperatures and freezing rain: power outages. At our house, the power was out for 26 hours. The roads went unplowed until December $30^{\text {th }}$.

Past Weather in Fairbanks - Graph

Past Weather in Fairbanks - Graph

Past Weather in Fairbanks - Graph

Past Weather in Fairbanks - Graph

Past Weather in Fairbanks - Graph

The white blanket; the snow cover the snowpack. Apun.
There the global impacts and ramifications arise.

On the ground, conditions are so different than in the clouds.

They break apart due to gravity.

They round due to the Kelvin Effect.

They become re-faceted and striated due to strong temperature gradients across the pack.

Glass plates

$$
5
$$

Lastly, they can be pulverized and packed together by the wind then fused (sintered) into a solid mass.

What next for snow?

Daily Snow Extent - January 30, 2022 (Day 30)

Monthly Snow Cover Extent - April 2021

0	10	25	40	55	70	85	100	

(2)

PEOPLE LOVE SNOW, They love to ski and sled on it, snowshoe through it, and watch it fall from the sky. They love the way it hlankets a landscape, making it look tranquil and beautiful Few people, however, know how snow works. What makes it possible for us to slip and slide over, whether that's falling on sidewalls or sking down a mountain? What makes it eling to branches and street signs? What qualities of snow lead to avalanches?

In A Field Guide to Snow, veteran snow scientist Matthew Sturm answers those questions and more. Drawing on decades of study, he explains in clear and simple ways how and why snow works the way it does. The perfect companion a skl trip or a hike in the snowy woods, A Firld Guide to Snow will give you a new appreciation for the science behind snow's beauty.

Matthew Sturn is professor of geophipice at the Geoplysical Inmitute, Univerity of Alaska Faitbenks and the lender of the Snow-lce-Permalrost Group at the Institute. He is the author of three books and a fellow of the American Geoptrvical Union.

SCIENCE
University of Alaska Press

FIELD GUIDE TO SNOW

MATTHEW STURM

Thank you!

